
NAS Technical Report
NAS-05-016
 Creation of a Multilevel Parallel Version of CFL3D

Robert J. Bergeron

bergeron@nas.nasa.gov

NAS Systems Division
NASA Ames Research Center

Mail Stop 258-5
Moffett Field, CA 94035-1000

Abstract

Multilevel parallel versions of CFL3D have been created and their performance has been evaluated for a
complete aircraft problem on NAS platforms. CFL3D is a three-dimensional multi-block Navier-Stokes
flow solver for structured grids and the official version of the code employs MPI to execute calculations
in parallel over the discrete geometrical regions. A second version of the code employing the MLP library
was created to compare its performance to that of the MPI library. The major modification to CFL3D,
involving the aggressive exploitation of parallelism in the main computational loop, was added to both
versions of the code using the OpenMP library. Elimination of the output routine and reassembly of the
output after execution increased the effectiveness of all code improvements.
On the SGI 3000 architecture, the overall improvements have produced a speedup of 8.5 in the most time-
consuming iterations and implementation on the SGI Altix has further increased this speedup by a factor
of 5.5. The MLP library demonstrates a performance somewhat superior to the MPI library because of its
superior load balancing capabilities.

1. Introduction
Application programs sometimes require modification to exploit the computational power of modern
supercomputers. To add a significant amount of value, such modification efforts should target those
applications used extensively and then apply the proper set of modifications. This report will discuss the
application of multilevel parallelism to a major aeronautics design code. This section describes the
aeronautics code and outlines the efforts made to exploit additional parallelism in this code.
CFL3D is a Reynolds-Averaged Navier-Stokes thin layer time-dependent solver for structured
grids[1].The code has been employed in a wide variety of applications, ranging from low subsonic
turbomachinery simulations to hypersonic National AeroSpace Plane design.Recent success with another
computational fluid dynamics code, OVERFLOW[2], motivated a request to NAS to investigate the
application of multilevel parallelism to CFL3D.
CFL3D employs upwind differencing and flux-vector splitting in a finite-volume solution
framework.This code employs mesh sequencing, multigrid and local timestepping to accelerate
convergence to the steady state. Time-accurate calculations employ implicit approximate factorization
and subiterations to improve temporal accuracy. The code partitions complex geometries into discrete
regions and solves the governing equations in parallel over these regions using the MPI library. This code
employs a master/worker approach in which the worker visits regions whose data is local to the worker
process. MPI send/receive pairs transmit convergence-related data to the master for evaluation and
printout.The CFL3D code uses the term grid to refer to the set of points comprising the physical flow-

December 2005
Page 1

NAS Technical Report
NAS-05-016
field and block to describe the fine grid and various sub-grids.
The code consists of three parts: a preface, a compute section, and the wrap-up. The preface reads the
initial and boundary conditions, performs the grid setup, reads the restart, initializes quantities necessary
to the problem such as the minimum distance to the nearest viscous wall, and computes cell-interface
areas.
The compute section manages several types of boundary conditions, and executes the main loop which
visits all the blocks. This loop evaluates the turbulence and the flux contributions to the right-hand side,
and advances the solution in time. The loop executes the routines which drive the computationally-
intense sections of CFL3D, and exposure of OpenMP parallelism in these routines was a key to achieving
scalable performance.
The wrap-up writes the restart, calculates turbulent flow quantities at solid surfaces, and outputs various
data for plotting or printing.
A technique for combining high-level decompositions with fine-grained parallelism, MultiLevel
Parallelism (MLP) has achieved some success recently on SGI platforms [2]. Applying both coarse-grain
and fine-grain levels of parallelism to a single code is not new. The Cray shared-memory platforms
provided this technique in 1989 through the combination of macrotasking and microtasking. The use of
these utilities in combination was not widespread, due in part to the large memory requirements of
problems which would justify their use and also due in part to the somewhat arcane problems
encountered in their use.
The great advantage of the MLP approach is the ease in expressing the parallelism and obtaining scalable
performance. This approach employs the UNIX 'fork' command to spawn a set of coarse-grain processes
at the user’s discretion. MLP allows insertion of OpenMP [3] loop-level directives into computationally
intense regions of the code because each MLP process is an independent high-level process.
Communication of shared memory data occurs through FORTRAN loads and stores, and allocation of the
shared memory requires simple FORTRAN statements. The MLP library has undergone several revisions
to increase its performance; in particular, the addition of a set-and-test functionality has allowed MLP to
add an asynchronous feature to its repertoire and this feature strongly influences CFL3D performance.
The simplicity and reliability of the OpenMP library promotes a second level of parallelism for the MPI
and MLP approaches. Efficient employment of OpenMP involves the exposure of large (spanning
subroutines) secondary parallel constructions to reduce the load imbalances generated especially by the
high-level decomposition of CFD geometries.
The CFL3D versions discussed herein have executed on NAS machines with somewhat different
architectures, and this report uses the term node to refer to a group of CPUs sharing a common memory.
Thus the NAS platform Lomax has 128 nodes with 4 CPUs sharing each node’s memory for a total of 512
CPUs and the NAS platform Columbia consists of multiple 256-node cabinets with 2 CPUs sharing a
node’s memory.
The MLP library uses shared memory as a common location for data to be accessed by multiple
processes, and the user must explicitly allocate such shared memory based on an understanding of what
data needs to be shared. Sections 1 and 2 will clarify the data required to reside in shared memory, and
Section 3 discusses some aspects of shared memory optimization. CFL3D uses the MPI library to transmit
data from one process to another; the MLP version uses simple loads and stores to do the same transfer
and Section 4 discusses this modification to the MPI version. The ASCII output routine for many
traditional single processor codes is frequently a performance bottleneck and becomes more so as such
codes are converted to parallelism; Section 5 explains the removal of this bottleneck for both versions of
CFL3D.The second level of parallelism involves the use of additional processes (termed threads to
indicate their limited nature, both inmemory and existence) in computationally intense regions to reduce
wall-clock times and Section 6 describes the exposure of this additional parallelism. For both MPI and
MLP versions, scalable performance, i.e.,a wall-clock time which continues to decrease in a proportional
fashion with the addition of more processors, requires proper memory placement of the OpenMP threads
to processors. Section 7 discusses this thread/processor placement. Section 8 compares MPI and MLP
performance on a large test problem and Section 9 presents some conclusions.

December 2005
Page 2

NAS Technical Report
NAS-05-016
2. Sizing of MLP Shared Memory
The shared memory serves as a common storage area to allow the MLP loads and stores to replace the
MPI_Send and MPI_Recv calls.The sizing of shared memory involved several iterations, based on the
experience gained from the test problems.The size of the shared memory must be set before creating
(forking) the high-level parallel processes. The MPI version of CFL3D invokes subroutine SIZER before
execution of the solution algorithm to set the dimensions of the key arrays, and the MLP version also
used SIZER to establish the dimensions of the shared memory array.
Typically, boundary conditions and restart requirements set the size of shared memory because the
former involves exchanging neighboring grid partial solutions and the latter requires the workers to send
their entire solution to the host for transfer to the restart file. Since all the MLP processors fill the shared
memory array(s) simultaneously, such array(s) must be properly sized, i.e., according to the problem
input specifications.
Experience with CFL3D problems indicated that boundary conditions determined the shared memory
size for some problems and the restart requirements determined the shared memory size for others. The
SIZER subroutine uses the actual loops from the boundary conditions to determine the size of the arrays
which must be sent from one process to another. Similarly, SIZER uses the actual loops from the restart
routines to determine the size of the arrays which must be sent from the workers to the master. Thus,
SIZER establishes the maximum amount of MLP shared memory required for a process and for the entire
problem. The starting addresses of processor data determined by SIZER are placed into arrays, and since
SIZER executes before MLP_FORKIT spawn its high-level processes, all MLP processors inherit these
address arrays.
The shared memory array containing floating point data will be referred to as wkS; this array serves so
many purposes throughout the calculation that CFL3D requires only one other shared memory array,
iawkS, which contains integer addresses in wkS of the boundary condition data.

3. MLP Shared Memory Usage
The operating system allocates the shared memory segments from within the standard memory allocated
to the CPUs executing the MLP program Since such memory is a limited resource, shared memory usage
should be monitored and optimized. Both the monitoring and the optimizing of memory were required
to construct a robust MLP version of CFL3D.
The total memory used by the program consists of local memory and shared memory, and if this total
exceeds the memory of the CPUs requested by the job, the program will die. CFL3D lays out the worker
processes sequentially by memory requirements, beginning with the largest, and since the MLP processes
share node memory, several large processes executing on the same node can oversubscribe the node
memory. The operating system may request the extra memory from the next available node to satisfy the
oversubscription, and the effect will be to slow code performance since memory access will be over the
network. Fortunately, the NAS SGI Origins allowed the development of a local code, fmem, by Bob Ciotti
for nodewise tracking of memory used by a job, and this tool aided greatly in the development of the
MLP version of CFL3D. Fmem provides a snapshot of free memory at a rate selected by the user, and
combined with sleep calls inserted into the code, enables the user to easily identify the source of any
memory oversubscription.
CFL3D has two features which impact memory usage and which presented problems for the MLP
version. After assigning the master process to the first available CPU, CFL3D assigns the process with the
largest grid dimensions to the next available CPU. The code continues to place processes onto CPUs
according to memory requirements. The Lomax architecture requires that 4 CPUs share a single node's
memory, and the CFL3D scheduling algorithm will place three processes with the largest memory
requirements on the first node, thereby inadvertently challenging the nodal memory capacity.
Additionally, the MPI CFL3D memory arrangement assigns the same amount of memory to each high-
level process, the total memory being composed of the q-array (array containing mass, momentum, and
energy) and the scratch array. After computing the maximum process scratch memory requirements, the
POINTER subroutine simply adds memory to the scratch arrays belonging to the other processes, so that
all processes have the same memory requirements. This approach works fine when the code executes a

December 2005
Page 3

NAS Technical Report
NAS-05-016
single level of MPI parallelism, perhaps on a cluster of workstations. The approach runs into memory
oversubscription and subsequent performance problems when running multi-level parallelism on a
shared memory computer.The MLP solution to the scratch size problem was to use the data available in
subroutine POINTER to return the proper scratch array size and this approach produced a considerable
reduction in memory usage.
To solve the shared memory sizing problem, MLP always packs the shared memory array in one-
dimensional fashion to avoid any extra usage arising from 2 or 3 dimensional addressing. Furthermore,
examination of the CFL3D data flow indicated that only a single shared memory array was necessary.
After modifications reducing the scratch array size and shared memory usage were implemented, the
MLP version experienced no performance problems from excess memory requirements.

4. MLP Data Transfer
The typical MLP conversion of an MPI parallel code begins by replacing MPI library send/recv pairs
with a Fortran load-barrier-store sequence, in which the data to be transferred is loaded into shared
memory, an MLP barrier is then set to prevent the processors from executing until the load has
completed, and finally the shared memory data is stored into local memory. This approach is sometimes
described as a “ping-pong” approach.The current MLP version has replaced about 80 of the 300 MPI calls
with MLP loads and stores; additional replacements will be straightforward when problems exercising
these parts of the code are executed.
The CFL3D boundary conditions illustrate the additional applicability of the MLP data transfer technique
to MPI asynchronous message-passing (Isend/Irecv). BC_BLKINT employs asynchronous message-
passing to exchange block interface boundary conditions for grids sharing a continuous common
interface and BC_PATCH does the same for grids sharing a noncontinuous common interface. In the
asynchronous treatment, each MPI worker process posts a series of messages, essentially to a queue
containing the number of the receiving process and the locations of the data. After posting the receives
and sends and executing an MPI_WAITALL, the boundary routines execute a loop over the number of
messages until the loop has processed all messages.
The MLP version simulates the message-passing in the SIZER subroutine to obtain the amount of
memory needed by each process in the wkS array. The boundary routines also contain an additional
simulation to place the index of the location for each message in the wkS array into another shared
memory array, iawkS. The boundary routines then execute in a fast ping-pong fashion in which each
high-level process loads its transmitted data into the wkS array, waits for all such loads to complete using
a single MLP barrier call, and then stores the data it received from the wkS array into a local memory
array and proceeds.
CFL3D also supports overlapping and embedded grid boundary conditions, but the current test problems
do not request these types and so these routines currently lack the required MLP modifications.

5. High-Level Processor Optimization
Two CFL3D problems requiring some high-level processor optimization of the code surfaced during the
creation of the multilevel parallel versions, one was specific to the MLP version and the second applied to
both versions.
In subroutine RESP (Residual Print), the worker processes send the data required to monitor density and
turbulence residuals, and force/moment coefficients to the master process for evaluation and printout.
Since the amount of data transmitted to the master is small, MPI performs such transfers asynchronously
(and very fast) with the MPI library accounting for the extra memory via system buffers. The MLP code
with its new set-and-test routine was able to replace its ping-pong treatment and also perform such small
data transfers asynchronously; however, the MLP code must explicitly account for the extra memory
required to perform such transfers. The new MLP library containing the set-and-test routine is currently
available only on the Altix machines; no effort was made to port it to the SGI 3000 architecture since NAS
will use the Altix machines in the future.
The second optimization involved formatted CFL3D output. Timing studies indicated that the CFL3D test
problems spend most of their time in the output routine, WRIT_BUF, because once a worker has

December 2005
Page 4

NAS Technical Report
NAS-05-016
prepared data for the master, the worker must wait until the master process calls for it. The workers send
to the master, on a blockwise basis, ASCII data detailing the timestep calculations, the boundary
conditions, and the general progress of the calculation.In contrast to the RESP subroutine discussed
above, the amount of data transmitted in WRIT_BUF is large and MPI does not readily allow
asynchronous processing of such requests.Initially, MLP development followed the MPI approach,
transmitting the local convergence data using shared memory, but the resulting modification produced
no significant reduction in wall-clock time due to the serial nature of the output processing.
Following a technique used by Jim Taft in the OVERFLOW code[2], MLP worker processes now simply
write their output to a local file and return to the calculation. CFL3D has about 30 separate calls to
WRIT_BUF and master and worker processes now write the number of output call on their respective
files. Upon completion of the problem, the master's file contains its global output plus these call flags
indicating the type of output which would have been written had the worker-to-master transmittal
occurred. The worker files contain an output flag written before each set of local convergence data.
Successful placing of the output flags onto the master’s file required some experimentation due to the
tendency for records to be compressed or overwritten. When the problem completes, a simple Fortran
code reads the master file and uses its output flags to copy the proper worker data from the worker files
onto the master file. Reassembly takes 1 or 2 seconds, and for the current five test problems, the
reassembled output files agree with the MPI output file, apart from a few blank lines and spaces.
Removal of the serial output processing in CFL3D, its consequent reduction in wall-clock time and the
relative ease of this task should make this approach a general prescription for all parallel codes. At this
stage in the development of parallel codes, no code should spend a significant fraction of time processing
ASCII output.

6. Second-level Parallelism with OpenMP
The multilevel parallel approach enjoying some success on NAS application codes does not rely on
compiler-driven or tool-driven exposure of parallelism.Instead, this approach seeks an understanding of
how the code operates on the key data arrays and then exposes parallelism at a high level to give the
processors large chunks of work. Identifying the subroutines or code loops which can act as the parallel
drivers for this high-level parallelism sometimes presents challenges.The CFL3D manual[1] does indeed
identify all such driver subroutines; however, exposing the parallelism contained therein required some
effort. Codes lacking such well-written manuals will require an execution flowtrace to help identify
potential OpenMP driver subroutines. Such a flowtrace can be constructed by placing print statements at
the beginning of each subroutine and subsequently reducing the output to manageable levels.
For each multigrid level, the MPI or MLP process executing the main computational loop in MGBLK
visits the blocks belonging to the level whose data is local to that processor. If the data is local to the
processor, each process calls subroutines RESID to evaluate the right hand side (fluxes) and AF3F to
advance the solution in time. RESID and AF3F contain loops over grid planes in various J-K-I directions
which evaluate fluxes. These routines control the two major chunks of computational work in the main
loop.
The original MPI version chunks these DO-loops, i.e., the code divides the number of planes by a
convenient number, 64 for example, to improve performance and then makes 1 or 2 passes through these
loops. The small number of loop iterations does not allow extra OpenMP threads to assist in the execution
of these loops to reduce the wall-clock time
The OpenMP version modifies the routines RESID and AF3F to remove the chunking from these loops,
allowing extra threads to participate evenly in their execution. Identification of RESID and AF3F as the
OpenMP driver subroutines and the subsequent removal of the loop chunking was the key to reducing
wall-clock time with the second level of parallelism. This action illustrates aggressive user intervention in
parallel regions.Compiler or parallel tool creation of the parallel regions is inefficient; for example, it is
highly unlikely that a parallel tool would even be able to recognize the importance of such loops or to
create parallel regions which span subroutines effectively. The use of OpenMP in the main loop is the
only place extra OpenMP threads assist the CFL3D computation.
The multilevel parallel versions call the OpenMP library before the main loop to make available extra
processors to assist in the execution of loops in the subroutines called by RESID and AF3F. Two

December 2005
Page 5

NAS Technical Report
NAS-05-016
complications arise from OpenMP usage:
-OpenMP threads share variables in the COMMON blocks, so only the master OpenMP thread may
update these variables and this restriction applies to all subroutines in the span of control of the two
driver subroutines.
-Memory access (loading and access of arrays) by multiple OpenMP threads requires careful
management. In subroutine RESID, the work array, wk, provides both thread private and thread shared
scratch space. When executing under the OpenMP library with the multilevel parallelism, the OpenMP
threads need separate wk arrays and a special subroutine, DMGBLK0, instantiates the wk array as
wk(1,maxthr) where maxthr is the number of OpenMP threads for this multilevel processor. For thread-
private memory storage, the code addresses wk as wk(1,iam) where iam is the thread number, and for
thread-shared memory storage, the code addresses wk as wk(1,1).
Verification of the MLP library and OpenMP library modifications is carried out by examining the q-
arrays (arrays containing the density, momenta, and pressure) after the main loop. For all current test
problems, sums of the q-arrays agree to 8 digits after the decimal point with the checksum computed
with the released MPI version. In addition, both multilevel versions have executed correctly under
OpenMP all turbulence models currently allowed in CFL3D.

7. OpenMP Processor Memory Layout
The OpenMP threads assist the high-level processes by participating in the execution of certain driver
subroutines and the DO LOOPS comprising these routines. Before the OpenMP threads begin their work,
the OpenMP library copies the required data, typically OpenMP shared arrays, from the high-level
process to the processor(s) designated by the operating system as its OpenMP processor(s). Although
such copying is transparent to the user, it is overhead.If the MLP process and its OpenMP thread(s) share
a common memory, the copy overhead can be very small If the high-level process and its OpenMP
thread(s) do not share a common memory, the copy overhead may be very large and may adversely
affect performance.
The MPI standard does not prescribe the placement of OpenMP thread(s) relative to their high-level
process. Such arrangements are left to the operating system, with UNIX environment variables typically
granting the high-level process only a uniform number of OpenMP thread(s) and limited leeway
regarding their placement. Such restrictions do not allow efficient load-balancing of an aircraft
simulation.
In contrast, the MLP library call, MLP_FORKIT, enables efficient sharing of local memory by allowing the
user to specify the MLP processes and the OpenMP threads sharing a common memory. The user
specifies the number of OpenMP threads to be used by the MLP processor. If 4 processors share the local
memory (4 processors constitute a node), the MLP can ask for 1, 2, or 3 or, for large blocks, even 7
OpenMP threads, without incurring a copy penalty.
The MLP version of CFL3D reads an input file specifying the OpenMP arrangement and thus the process
memory layout. The code passes this data to the MLP_FORKIT routine. This routine assigns MLP
processes to the CPUs in a sequential fashion, reserving the number of CPUs requested for OpenMP
threads.
Table 1 illustrates the different grid sizes and the OpenMP layout for the Complete Aircraft simulation
discussed in the next section. The Table describes a 96-grid,72-node, 288-CPU simulation run on Lomax
and shows the distribution of OpenMP threads required to balance the computational load.

Table 1: Complete Aircraft MLP/OpenMP Processor Layout on Lomax

MLP Process OpenMP Threads Node Type Comment

01 1 1 No Grid master-1 CPU

02 7 1&2 Large Grid spans 2 nodes

03 4 3 Large Grid spans 1 node

December 2005
Page 6

NAS Technical Report
NAS-05-016
8. Performance
The multilevel parallel CFL3D versions have executed 5 different problems correctly, and the best
example of code performance is a 96-grid, 25-million-point problem involving a complete aircraft. As
shown above, this problem consists of a variety of small, medium, and large grids corresponding to
typical aircraft sections. The CFL3D simulation calls for 3 levels of multigrid consisting of the fine grid
and two coarse grids. In a multigrid code, most of the wallclock time will be spent visiting the fine grids,
and as the code makes hundreds or thousands of visits to converge the solution, the wallclock time will
largely consist of the time spent in the fine grid, and multilevel parallelism should display the greatest
improvements in these fine grids. CFL3D will visit all the fine grids in the first pass of the main
computational loop, but subsequent passes may skip those grids which have converged. The timings
below are the average wallclock times for the first pass through the fine grid and the average wallclock
times for the time spent in all passes of the fine grid. Timings are reported for execution on two NAS
platforms, the SGI Lomax and the newer SGI Columbia system, and for execution with two high-level
process counts. This paper characterizes the performance improvements by using the term speedup to
refer to the ratio of the wallclock time of the base case to the wallclock time of the case under
consideration.
In the 32-process case, each process treats 3 physical grids, and the load balance occurs largely through
the CFL3D grid placement on the high-level processors. In the 96-process case, each processor treats a
single grid and the OpenMP attempts to load balance come into play. The MPI/OpenMP CFL3D version
requires a special memory placement feature to operate efficiently on the Origin and Altix platforms. The
environment variable NUMTHREADS allows the operating system to space out the MPI processes to

04 4 4 Large Grid spans 1 node

... Large Grid spans 1 node

57 4 57 Large Grid spans 1 node

58 2 58 Medium Grid spans 1/2 node

... Medium Grid spans 1/2 node

69 2 63 Medium Grid spans 1/2 node

70 1 64 Small Grid spans 1/4 node

... Small Grid spans 1/4 node

74 1 65 Small Grid spans 1/4 node

75 2 65 Medium Grid spans 1/2 node

... Medium Grid spans 1/2 node

84 2 69 Medium Grid spans 1/2 node

85 1 70 Small Grid spans 1/4 node

... Small Grid spans 1/4 node

96 1 72 Small Grid spans 1/4 node

Table 1: Complete Aircraft MLP/OpenMP Processor Layout on Lomax

MLP Process OpenMP Threads Node Type Comment

December 2005
Page 7

NAS Technical Report
NAS-05-016
accomodate the OpenMP threads associated with each MPI process and to insure that the OpenMP
threads remain close to the parent MPI process.
All timings were obtained by normal execution in the NAS PBS workload.

Lomax

The Lomax machine is a SGI 3000 architecture consisting of 512 1.2 GFLOP CPUs, each with 512 Mbyte of
memory and an 8 Mbyte cache. Table 2 compares CFL3D performance on Lomax, illustrating the effects
of the fast I/O and multi-level parallelism.The Lomax timings were made with revision 3.0 of the MLP
library; pairwise synchronization of MLP processes, e.g., master and worker in RESP, involved an
mlp_barrier call.

Table 2: CFL3D Complete Aircraft Timings on SGI 3000 Lomax

Type
 Process
Count

OpenMP
Threads

Firstcycle Finegrid Comment

MPI 32 0 88.9 48.1 Original WRIT_BUF

MPI 32 0 29.4 14.7 Fast WRIT_BUF

MLP 32 0 64.2 32.1 Fast WRIT_BUF

MPI 32 32 18.7 9.3 NUMTHREADS=2

MLP 32 32 39.1 20.3 OpenMP load balanced

MPI 96 0 69.7 36.9 Original WRIT_BUF

MPI 96 0 16.8 8.4 Fast WRIT_BUF

MLP 96 0 15.8 7.9 Fast WRIT_BUF

MPI 96 96 10.4 5.2 NUMTHREADS=2

MLP 96 96 10.2 5.1 OpenMP load-balanced

MPI 96 192 15.7 7.8 NUMTHREADS=3

MLP 96 192 10.4 5.2 OpenMP load-balanced

December 2005
Page 8

NAS Technical Report
NAS-05-016
The insertion of the fast WRIT_BUF routine produced a speedup of about 3 relative to the original I/O for
MPI multilevel versions with 32 high-level processors. Wallclock time for the MLP version executing with
32 high-level processors and with 0 OpenMP threads was twice as large as the corresponding MPI
version and wallclock timings showed that the RESP timings were about factor of 2 greater than the
corresponding MPI timings. Section 6 explained why the MLP load-barrier-store construction in
subroutine RESP executes more slowly than the MPI Send/Recv construction.Doubling the number of
threads involved in the main computational loop produced a speedup of 4.8 for the MPI version and a
speedup of 2.3 for the MLP version when employing 32 OpenMP threads; however, the MLP wallclock
time continued to exceed that of the MPI version on the calculation.
When employing 96 processors, the MPI version displayed a speedup of 4.1 relative to the original
version. With an additional 96 OpenMP threads, the MPI version increases this speedup to 6.7. An
additional set of 96 threads does not improve the speedup due to the loss of data locality. Setting
NUMTHREADS to 3 violates the local data rule because, with 4 cpus per node, many OpenMP threads
do not execute on the same node as their high-level processor, requiring data transfer over the network.
With NUMTHREADS set to 4, the calculation recovers the data locality, displaying a speedup of 9.4
The MLP version performs better with 96 processors because the larger number of processes means fewer
RESP passes per process and leads to a smaller contribution to the MLP wallclock time. Additional sets of
96 OpenMP threads produced speedup improvements similar to the MPI version.With 288 additional
OpenMP threads the MLP version displays a speedup of 6.6.
The reason the MLP performance lags the MPI performance on LOMAX is the slower performance of the
MLP load-barrier-store relative to the MPI Send/Recv in RESP.

Columbia

The Columbia system consists of multiple SGI Altix 512 CPU systems, each CPU having a peak rate of 6.0
GFLOPs with a memory of 2 GByte and a 6 Mbyte cache. Table 3 compares CFL3D performance on the
Columbia system, illustrating the effects of the fast I/O and multi-level parallelism.Version 3.2 of the
MLP library allows a set- and-test synchronization equivalent to the pairwise MPI Send/Receive. This
functionality strongly influences the performance of the RESP routine which involves the master
receiving data from the workers in order to evaluate and print the residuals.

MPI 96 288 7.4 3.7 NUMTHREADS=4

MLP 96 288 8.6 4.3 OpenMP load-balanced

Table 3: CFL3D Complete Aircraft Timings on SGI ALTIX Columbia

Type
Process
Count

OpenMP
Threads

Firstcycle Finegrid Comment

MPI 32 0 26.9 14.1 Original WRIT_BUF

MPI 32 0 14.3 7.2 Fast WRIT_BUF

Table 2: CFL3D Complete Aircraft Timings on SGI 3000 Lomax

Type
 Process
Count

OpenMP
Threads

Firstcycle Finegrid Comment

December 2005
Page 9

NAS Technical Report
NAS-05-016
Compared to the Lomax platform, the application of the fast WRIT_BUF on Columbia produced a
speedup of about 2 relative to the original I/O for multilevel versions with 32 high-level processes and
about 1.6 for the multilevel versions with 96 processors. Since MPI processes spend substantially less time
in I/O on Columbia than on Lomax, the fast WRIT_BUF has less time to reduce on Columbia, so the
speedup is smaller.
Adding 32 OpenMP threads to the MPI 32-process case increased the speedup to 2.9 relative to the

MLP 32 0 9.0 4.5 Fast WRIT_BUF

MPI 32 32 9.2 4.8 NUMTHREADS=2

MLP 32 32 5.6 2.9 OpenMP load-balanced

MPI 32 64 43.8 21.9 NUMTHREADS=3

MLP 32 64 4.8 2.4 OpenMP load-balanced

MPI 32 96 7.6 3.8 NUMTHREADS=4

MLP 32 96 5.8 2.9 OpenMP load-balanced

MPI 96 0 12.0 6.2 Original WRIT_BUF

MPI 96 0 7.5 3.7 Fast WRIT_BUF

MLP 96 0 5.3 2.7 Asynchronous RESP

MPI 96 96 4.2 2.1 NUMTHREADS=2

MLP 96 96 2.8 1.4 OpenMP load-balanced

MPI 96 192 12.7 6.5 NUMTHREADS=3

MLP 96 192 2.2 1.0 OpenMP load-balanced

MPI 96 288 3.8 1.9 NUMTHREADS=4

MLP 96 288 1.8 0.9 OpenMP load-balanced

Table 3: CFL3D Complete Aircraft Timings on SGI ALTIX Columbia

Type
Process
Count

OpenMP
Threads

Firstcycle Finegrid Comment

December 2005
Page 10

NAS Technical Report
NAS-05-016
original I/O for multilevel versions with 32 high-level processes. As on Lomax, setting NUMTHREADS
to 3 increased wallclock time as data locality is lost. A NUMTHREADS setting of 4 recovered the data
locality and produced a speedup of 3.5 (26.9/7.6) relative to the original I/O for multilevel versions with
32 high-level processes. The MLP version with 0 OpenMP threads displays a speedup of 3.0 for 32 high-
level processes; wallclock timings showed that the fast set-and-test routine in RESP was responsible for
the greater speedup relative to the MPI version (3.0 vs. 2) improvement.With 32 OpenMP threads
involved the main computational loop, the MLP speedup increased to 4.8.
When employing 96 OpenMP processes, the MPI version displays a speedup 1.6 and the MLP version
displays a speedup of 2.3 relative to the original I/O for multilevel versions with 96 high-level processes.
The MLP code is somewhat more effective at improving performance because MLP can assign OpenMP
threads in proportion to the computational load assumed by the high-level process.Adding 288 threads to
the original 96 processes increases the speedup to 3.2 for the MPI version and 6.7 for the MLP version;
detailed timings show that the large grids are controlling the performance and they are unable to use
effectively more than 10 threads.
Both Tables show that implementing a second-level of parallelism can add considerable value to the code
as a design tool due to the faster turnaround. On Lomax, the official released version of CFL3D requires
about 89 seconds on the finegrid calculation and the modifications discussed herein reduce this time to
about 10 seconds. On Columbia, the official released version of CFL3D requires about 26.9 seconds on the
finegrid calculation and the modifications discussed herein reduce this time to less than 2 seconds.

9. Conclusion
This report has described the creation of multilevel parallel versions of CFL3D and the subsequent
performance gains displayed by those versions.The complexity of the code required an aggressive effort
to achieve those gains, but the concentration of the CFL3D computational load in a single large loop
simplified that effort. A careful reader will have encountered herein solutions to many of the problems
attending the creation of a multilevel parallel code. Extensive use of these versions should amortize the
creation overhead.
The major contributor to run-time improvement was the output optimization which was motivated by its
role as the major bottleneck at all levels of parallelism. Additional OpenMP parallelism benefited both
MPI and MLP versions of CFL3D with the MLP version demonstrating a somewhat greater performance
improvement due to its load-balancing ability.
CFL3D was not designed to execute in a multilevel parallel mode and the fact that it does execute in a
relatively efficient fashion indicates that this approach, i.e., the active creation of multilevel parallel
regions, has considerable applicability, both to codes that have already been parallelized and codes that
have yet to be parallelized.

References
[1] S.L.Krist, R.T. Biedron, and C.L. Rumsey, “CFL3D User’s Manual”, NASA/TM-1998-208444, June,
1998,
[2] J. R.Taft, “Performance of the OVERFLOW-MLP CFD Code on the NASA Ames 512 CPU Origin
System,” In NASA HPCCP/CAS Workshop, NASA Ames Research Center, February 2000.
[3] http://www.OpenMP.org, OpenMP Fortran Application Program Interface.

December 2005
Page 11

	Creation of a Multilevel Parallel Version of CFL3D
	1. Introduction
	2. Sizing of MLP Shared Memory
	3. MLP Shared Memory Usage
	4. MLP Data Transfer
	6. Second-level Parallelism with OpenMP
	Table 1: Complete Aircraft MLP/OpenMP Processor Layout on Lomax

	8. Performance
	Table 2: CFL3D Complete Aircraft Timings on SGI 3000 Lomax
	Table 3: CFL3D Complete Aircraft Timings on SGI ALTIX Columbia

	9. Conclusion
	References

